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Abstract. Recently, the descriptional and computational complexity of
various pumping lemmata for general regular languages have been inves-
tigated in the literature. There it turned out that in almost all cases tight
bounds on the operational complexity of minimal pumping constants for
regular languages have been obtained. From the computational perspec-
tive it was shown that in most cases the question whether a certain
value can serve as a pumping constant w.r.t. a fixed pumping lemma
is computationally intractable. Whether similar results can be obtained
for restricted regular languages, such as unary regular languages, was
left open—a language is unary if the underlying alphabet is a singleton
set. Here we fill this gap by considering in detail questions on various
pumping lemmata for unary regular languages. While some of the results
obtained are similar to those in the general case, we also find significant
differences. The results presented here fit well with the previous results
and give a mostly complete picture of the problems in question.

1 Introduction

To pump, or not to pump, that is the question, if one tries to prove that a
specific language is not regular. Pumping lemmata are a main tool in any formal
language and automata course for this task—see, [?] for a comprehensive survey
of different variants of pumping lemmata for regular, context-free languages and
beyond. One of the most common pumping lemmata, yet not the first one [?] of
its kind, can be found in [?, page 70, Theorem 11.1].

Lemma 1. Let L be a regular language over Σ. Then, there is a constant p
(depending on L) such that the following holds: If w ∈ L and |w| ≥ p, then there
are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and xytz ∈ L for
all t ≥ 0—it is then said that y can be pumped in w.

Most pumping lemmata describe a necessary condition for a language to be
regular, as the above one, but there are also lemmata that characterize the regu-
lar languages, by describing a necessary and sufficient condition for languages to
be regular. One of the first ones of this kind is attributed to Jaffe [?] and reads
as follows:



Lemma 2. A language L is regular if and only if there is a constant p (depend-
ing on L) such that the following holds: If w ∈ Σ∗ and |w| = p, then there are
words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and3

wv = xyzv ∈ L ⇐⇒ xytzv ∈ L

for all t ≥ 0 and each v ∈ Σ∗.

Recently, the descriptional and computational complexity of problems re-
lated to some specific pumping lemmata were considered in a series of pa-
pers [?,?,?,?,?,?]. Roughly speaking this is the study of the minimal pump-
ing constants that satisfy a particular pumping lemma, such as one of the
above stated ones, from the aforementioned complexity perspectives. Let mpc(L)
(mpe(L), respectively) denote the smallest number p that satisfies the condition
of Lemma ?? (Lemma ??, respectively) when considering the regular language L.
We state one example result for a descriptional complexity problem from [?] and
another one for a computational problem [?]: first consider the complementation
operation w.r.t. minimal pumping constants. Starting with a language L over
the alphabet Σ satisfying mpc(L) = n, one ends up with

mpc(Σ∗ \ L) ∈


{1}, if n = 0,
N0 \ {1}, if n = 1,
N, otherwise.

For mpe the situation is easier, since mpe(L) = mpe(Σ∗ \ L). Second, asking
the question whether for a language given by a finite automaton and a par-
ticular value of p the properties of a pumping lemma is satisfied results in
the Pumping-Problem. For DFAs this problem is coNP-complete regardless
whether Lemma ?? or Lemma ?? is considered. For NFAs the situation changes
to coNP-hardness and containment in the second level of the polynomial hierar-
chy for Lemma ??, while becoming PSPACE-complete for Lemma ??. All these
results were proven for languages over an alphabet of at least two letters. Thus,
the question arises, which results still hold true for unary regular languages? We
partially solve this question in this paper in the affirmative. Observe, that the
pumping condition from Lemma ?? simplifies to

“If w ∈ L and |w| ≥ p, then there are words x ∈ Σ∗ and y ∈ Σ+ such
that w = xy and xyt ∈ L for t ≥ 0,”

for unary regular languages, since concatenation is commutative for unary lan-
guages. A similar simplification applies to Lemma ?? when considering unary
regular languages. Thus, in both cases the decomposition of the words becomes
easier, which may affect some of the known pumping problem results for lan-
guages over alphabets that are at least binary—see the summary of results shown
in the Tables ?? and ?? on page ?? and ??, respectively. Due to space constraints
most proofs are omitted.
3 Observe that the words w = xyz and xytz, for all t ≥ 0, belong to the same Myhill-

Nerode equivalence class of the language L. Thus, one can say that the pumping of
the word y in w respects equivalence classes.
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2 Preliminaries

We assume the reader to be familiar with the basics in computational complexity
theory [?]. In particular we recall the inclusion chain: P ⊆ NP ⊆ PSPACE. Here P
(NP, respectively) denotes the class of problems solvable by deterministic (non-
deterministic, respectively) Turing machines in polytime, and PSPACE refers
to the class of languages accepted by deterministic or nondeterministic Turing
machines in polynomial space [?]. As usual, the prefix co refers to the comple-
ment class. For instance, coNP is the class of problems that are complements
of NP problems. Moreover, recall the complexity class ΠP

2 from the polynomial
hierarchy, which can be described by polynomial time bounded oracle Turing
machines. Here ΠP

2 = coNPNP, where coNPA is the set of decision problems
solvable in polynomial time by a universal Turing machine with an oracle for
some language in the class A. The class NPA is defined analogously on a universal
Turing machine. Moreover, let ΘP

2 = PNP
|| , which is the set of all decision prob-

lems that can be solved by a deterministic Turing machine in polynomial time
with access to an NP oracle such that a list of all queries is formed before any
of them is made (non-adaptive queries). The inclusion chain coNP ⊆ ΘP

2 ⊆ ΠP
2

is known [?]. Completeness and hardness are always meant with respect to de-
terministic many-one logspace reducibilities (≤log

m ) unless stated otherwise.
Next we fix some definitions on finite automata—cf. [?]. A nondeterministic

finite automaton (NFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function · maps Q × Σ to 2Q.
Here 2Q refers to the powerset of Q. The language accepted by the NFA A is
defined as L(A) = {w ∈ Σ∗ | (q0 · w) ∩ F ̸= ∅ }, where the transition function is
recursively extended to a mapping Q×Σ∗ → 2Q in the usual way. An NFA A is
said to be partial deterministic if |q ·a| ≤ 1 and deterministic (DFA) if |q ·a| = 1
for all q ∈ Q and a ∈ Σ. In these cases we simply write q · a = p instead of
q · a = {p}. Note that every partial DFA can be made complete by introducing
a non-accepting sink state that collects all non-specified transitions. For a DFA,
obviously every letter a ∈ Σ induces a mapping from the state set Q to Q by
q 7→ q · a, for every q ∈ Q. Finally, a finite automaton is unary if the input
alphabet Σ is a singleton set, that is, Σ = {a}, for some input symbol a.

The deterministic state complexity of a finite automaton A with state set Q
is referred to as sc(A) := |Q| and the deterministic state complexity of a regular
language L is defined as

sc(L) = min{ sc(A) | A is a DFA accepting L, i.e., L = L(A) }.

A similar definition applies for the nondeterministic state complexity of a regular
language by changing DFA to NFA in the definition, which we refer to as nsc(L).
It is well known that

nsc(L) ≤ sc(L) ≤ 2nsc(L),

for every regular language L.
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A finite automaton is minimal if its number of states is minimal with respect
to the accepted language. It is well known that each minimal DFA is isomorphic
to the DFA induced by the Myhill-Nerode equivalence relation. The Myhill-
Nerode equivalence relation ∼L for a language L ⊆ Σ∗ is defined as follows: for
u, v ∈ Σ∗ let u ∼L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. The
equivalence class of u is referred to as [u]L or simply [u] if the language is clear
from the context and it is the set of all words that are equivalent to u w.r.t.
the relation ∼L, i.e., [u]L = { v | u ∼L v }. Therefore we refer to the automaton
induced by the Myhill-Nerode equivalence relation ∼L as the minimal DFA for
the language L. On the other hand there may be minimal non-isomorphic NFAs
for L.

3 Results on Pumping for Unary Finite Automata

At first we summarize some basic properties on the minimal pumping constants
w.r.t. Lemmata ?? and ?? for arbitrary regular languages, not necessarily unary
languages. The following relations

mpc(L) ≤ mpe(L) ≤ sc(L) and mpc(L) ≤ nsc(L)

for every regular language L are known from [?,?,?]; interestingly the two mea-
sures mpe and nsc are incomparable [?]. Further simple facts for a regular lan-
guage L ⊆ Σ∗ are the following:

1. mpc(L) = 0 if and only if L = ∅,
2. for every nonempty finite language L we have

mpc(L) = 1 +max{ |w| | w ∈ L } ≤ mpe(L) ≤ 2 + max{ |w| | w ∈ L },

3. mpc(L) = 1 implies that the empty word λ is in L, and
4. mpe(L) = 1 if and only if L = ∅ or L = Σ∗.

By definition of the minimal pumping constant w.r.t. Lemma ?? we know that for
every regular language L there is a nonempty word w ∈ L with |w| = mpc(L)−1.
A similar result is not valid for the minimal pumping constant w.r.t. Lemma ??
since one cannot force w ∈ L in this case. The following observation is immediate
by Jaffe’s proof, cf. [?], and was mentioned first in [?]—in contrast, there is no
obvious relation between mpc and the longest path in the finite state device.

Lemma 3. Let A be a DFA and L := L(A). Then mpe(L) ≤ ℓA + 1, where ℓA
is the length, i.e., number of transitions, of the longest path of the automaton A.
If L is a unary language, then mpe(L) = sc(L).

Thus, the descriptional complexity measures mpe and sc are equivalent for
unary finite languages.
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3.1 Descriptional Complexity of the Operation Problem

This section is devoted to the descriptional complexity of the operation prob-
lem w.r.t. minimal pumping constants for the pumping lemmata introduced
here. In general, the operation problem for a regularity preserving n-ary func-
tion ◦ on languages and a descriptional complexity measure K is given by
gK◦ (k1, k2, . . . , kn) as the set of all numbers k such that there are regular lan-
guages L1, L2, . . . , Ln with descriptional complexity K(Li) = ki, for 1 ≤ i ≤ n,
and K(◦(L1, L2, . . . , Ln)) = k. If only unary regular languages are taken into
account, then we write gK,u

◦ (k1, k2, . . . , kn) for the operational complexity of
the ◦-operation. Here we assume that K ∈ {mpc, mpe}. Results on the descrip-
tional complexity of the measures mpc, mpe, and others can be found in [?,?], but
only the operation problem for mpc and some other measures, except for mpe,
was investigated in more detail in [?]—the operation problem is completely un-
touched for mpe yet. The behaviour of the mpc measure differs with respect to
finiteness/infinity of ranges depending on the considered operation. Our findings
are summarized in Table ??, where the set of all natural numbers not including
zero is denoted by N; if zero is included, then we write N0 instead. Moreover,
for n ≥ 2, let N≥n refer to the set {n, n+1, . . .}. The gray shaded entries in the
table are new results.

Minimal pumping constant

mpc mpe

Operation unary general unary

Reversal {n} {n} {n}

Prefix {0}, if n = 0,
{1, n}, otherwise.

{0}, if n = 0,
{1, 2, . . . , n}, otherwise.

{0}, if n = 0,
{1, n}, otherwise.

Suffix {0}, if n = 0,
{1, n}, otherwise.

{0}, if n = 0,
{1, 2, . . . , n}, otherwise.

{0}, if n = 0,
{1, n}, otherwise.

Complement
{1}, if n = 0,
N0 \ {1}, if n = 1,
N \ {n}, otherwise.

{1}, if n = 0,
N0 \ {1}, if n = 1,
N, otherwise.

{n}

Intersection

{0}, if m = 0 or n = 0,
{1}, if m = n = 1,
N≥n, if m = n ≥ 2,
N0, otherwise.

{0}, if m = 0 or n = 0,
N0 \ {2}, if m = n = 1,
N0, otherwise.

[1, (⌊n/2⌋ − 1) · ⌊n/4⌋ − 1] ⊆ ·
· ∩[n2 − n+ 2, n2] = ∅

Union

{0}, if m = 0 or n = 0,
{1}, if m = n = 1,
N≥n, if m = n ≥ 2,
N0, otherwise.

max{m,n}, if m = 0 or n = 0,
{1, 2, . . . ,max{m,n}}, otherwise.

[1, (⌊n/2⌋ − 1) · ⌊n/4⌋ − 1] ⊆ ·
· ∩[n2 − n+ 2, n2] = ∅

Table 1. Descriptional complexity of the operation problem for the measures mpc
and mpe. The mpe-results for intersection and union are only valid for m = n. An upper
bound is proved in the paper for general m and n for both cases. Gray shaded entries
indicate new results.

Before we start our investigation of the operation problem in detail, we state
the following auxiliary lemma, which turns out to be quite useful in the forth-
coming arguments, since it is a lower bound argument on the minimal pumping
constant w.r.t. Lemma ??. The statement is a reformulation of the fact that a
word cannot be pumped. Thus, we omit the straightforward proof.
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Lemma 4. Let L be a unary regular language over Σ = {a}. Then mpc(L) > ℓ
if there is a word w = aℓ in L such that

1. there is no word ak ∈ L, for 0 ≤ k < ℓ, or
2. the property ak(aℓ−k)∗ ̸⊆ L holds, for every word ak ∈ L with k < ℓ.

Let us start with the reversal operation. As usual the reversal of a word w is
denoted by wR and the reversal of the language L by LR. For unary languages L
we have L = LR which implies the following theorem—compare with the general
result for mpc listed in Table ??.

Theorem 5. gK,u
R (n) = {n}, for K ∈ {mpc, mpe}.

The next two operations we consider are the closure under prefix and suffix,
denoted by Pref(.) and Suff(.), respectively. The descriptional complexity of both
measures behaves in the same way for these operations.

Theorem 6. For K ∈ {mpc, mpe} we have

gK,u
Pref(n) = gK,u

Suff (n) =

{
{0}, if n = 0,
{1, n}, otherwise.

We continue our investigation with the complement operation. Let Σ be an
alphabet and L be a language over Σ, then we refer to the complement of L as
CΣ(L) = Σ∗ \ L. Here we find the following situation for unary languages—see
Table ??. The results for the two measures are entirely different. In the next
and the forthcoming proofs we use the abbreviation L≤n (L≥n, respectively), to
refer to the set

⋃n
i=0 L

i (
⋃∞

i=n L
i, respectively), for any language L.

Theorem 7. It holds

gmpc,uCΣ
(n) =


{1}, if n = 0,
N0 \ {1}, if n = 1,
N \ {n}, otherwise.

and gmpe,uCΣ
(n) = {n}.

Proof. We consider first the measure mpc. Like in [?], the high-level strategy is,
for given integers n and k, either to find a witness language L = Ln,k such that
mpc(L) = n and mpc(CΣ(L)) = k, or to prove that no such witness language
exists.

We distinguish the cases n = 0, n = 2 = k + 1, n = k ≥ 1, and n ≥ 3
with n > k—all other cases can be derived by using CΣ(CΣ(L)) = L:

1. For n = 0 we know that L = ∅ which implies that CΣ(L) = Σ∗ for all
alphabets Σ∗ which implies mpc(CΣ(L)) = 1.

2. In the case n = 2 = k + 1 we set L = a+ which fulfills mpc(L) = 2 since the
word a is the only non-pumpable word in L. On the other hand CΣ(L) = {λ}
is a finite language and therefore satisfies mpc(CΣ(L)) = 1.
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3. For n = k ≥ 1 assume that mpc(Ln,k) = mpc(CΣ(Ln,k)) = k = n. We
observe that due to the Lemma ?? there must be a word w ∈ Ln,k such
that |w| = mpc(L) − 1 = n − 1 which in turn implies that w = an−1.
Analogously we obtain that w = an−1 ∈ CΣ(Ln,k) and therefore w = an−1 ∈
Ln,k ∩ CΣ(Ln,k) = ∅ which is a contradiction.

4. If n ≥ 3 and n > k we set

Ln,k = {a}≤n−1 \ ({ak−1}) and thus CΣ(Ln,k) = {ak−1} ∪ {a}≥n.

Since Ln,k is a finite language we have mpc(Ln,k) = n. On the other hand we
observe that each word in CΣ(Ln,k) is pumpable except the word ak−1 which
is the shortest word in CΣ(Ln,k). Therefore we obtain mpc(CΣ(Ln,k)) = k.

Finally, the statement for mpe follows directly from Lemma ??. ⊓⊔

Now we come to the intersection of two unary languages.

Theorem 8. We have

gmpc,u∩ (m,n) =


{0}, if m = 0 or n = 0,
{1}, if m = n = 1,
N≥n, if m = n ≥ 2,
N0, otherwise.

For the minimal pumping constants w.r.t. Lemma ?? the situation concerning
the intersection operation is much more involved. First recall that for languages L
defined over arbitrarily large alphabets we have mpe(L) ≤ sc(L) and in particular
mpe(L) = sc(L) for unary languages L. Thus, the results on unary languages
presented below can be rewritten using sc instead of mpe and they remain still
valid.

The cross-product construction can be used to determine the automaton
accepting the intersection of two regular languages given by automata. Thus,
gmpe,u∩ (m,n) ⊆ [1,mn] and by a result from [?, Lemma 1] we also have the
inclusion relation [1,m] ⊆ gmpe,u∩ (m,n), if 1 ≤ m ≤ n. Before we can make it
more explicit which values in the interval [1,mn] can be reached, we need some
notation. For two sets S1 and S2 of numbers from N0, let

S1 ⊕ S2 := {x+ y | x ∈ S1 and y ∈ S2 }

denote their Minkowski addition. For m,n ≥ 2 and k ≥ 1 we define

Mm,n = { t1t2 | m mod t1 = n mod t2 = 0 }, and M1,k = Mk,1 = {1, k}.

Now we are ready for the next theorem, which is a consequence of a result
from [?].

Theorem 9. We have

gmpe,u∩ (m,n) ⊆
m⋃
ℓ=1

n⋃
k=1

(Mk,ℓ ⊕ [0,max{n− k,m− ℓ}]).
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The theorem above gives us a rather implicit description of the values that can
be possibly obtained by the intersection of two unary regular languages. In order
to get a better impression of this result we list the complements of the upper
bound sets described in Theorem ?? for small values of m and n in Table ??—the
complementation is done w.r.t. to the sets [1,mn]. For instance, for m = 6 and

n

m 2 3 4 5 6 7

2 ∅

3 ∅ {8}

4 ∅ {11} {11, 14, 15}

5 ∅ {14} {18, 19} {18, 19, 22, 23, 24}

6 ∅ {17} {22, 23} {23, 27, 28, 29} {23, 27, 28, 29, 32, 33, 34, 35}

7 ∅ {20} {23, 26, 27} {32, 33, 34} {33, 34, 38, 39, 40, 41} {33, 34, 38, 39, 40, 41, 44, 45, 46, 47, 48}

Table 2. The sets [1,mn]\
⋃m

ℓ=1

⋃n
k=1(Mk,ℓ⊕[0,max{n−k,m−ℓ}]) for small m and n.

n = 5 we find that the values in the set {23, 27, 28, 29} cannot be achieved as
mpe-values by the intersection operation on unary regular languages with mpe-
complexity m and n, respectively. A closer look reveals that only numbers from
the upper range close to the rightmost border of the interval [1,mn] are listed.
Since the analysis of the function gmpe,u∩ in general is quite involved, we continue
our investigation with a focus on the case m = n.

Consequently, we are interested in the function gmpe,u∩ (n, n) ⊆ [1, n2]. First,
we show that the upper range [n2 −n+2, n2] cannot be reached by gmpe,u∩ (n, n),
for large enough n. From Theorem ?? we can derive that the upper range of
possible numbers is not attainable—the stated result is also a direct implication
of [?, Theorem 4].

Lemma 10. For n ≥ 2 we have gmpe,u∩ (n, n) ∩ [n2 − n+ 2, n2] = ∅.

Proof. Observe that if L and L′ are cyclic, i.e., they are accepted by a DFA which
consists of one cycle with n states and an empty tail, then L ∩ L′ is accepted
by a DFA consisting of one cycle with n states and an empty tail, too. One
easily observes that if either L or L′ is not cyclic, then within the cross-product
construction we obtain an automaton accepting L∩L′ with less than n2 states.
Hence, the number n2 cannot be in gmpe,u∩ (n, n). On the other hand we have that
the greatest number in

n⋃
ℓ=1

n⋃
k=1

(Mk,ℓ ⊕ [0,max{n− k, n− ℓ}]) \ {n2}

is n ·(n−1)+1 = n2−n+1 which proves the stated claim with Theorem ??. ⊓⊔
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Regarding the lower end of the interval, the next theorem improves the afore-
mentioned result [1, n] ⊆ gmpe,u∩ (n, n) from [?, Lemma 1] to a much larger range:

Theorem 11. For n ≥ 2 we have [1, (⌊n/2⌋ − 1) · ⌊n/4⌋ − 1] ⊆ gmpe,u∩ (n, n).

With the aid of Theorems ?? and ?? we can tell for each number whether it
can be reached or not via intersection, except for the numbers in the range

[(⌊n/2⌋ − 1) · ⌊n/4⌋, n2 − n+ 1].

By computing the numbers gmpe,u∩ (n, n), using exhaustive computer search, up
to the value n = 10, we found that numbers which are not covered by the above
theorems satisfy a specific side condition—we may require that the factors in
the products in Mk,ℓ are coprime. Therefore we conjecture the following.

Conjecture 1 We have gmpe,u∩ (n, n) =
⋃n

ℓ=1

⋃n
k=1(M̂k,ℓ⊕ [0,max{n−k, n−ℓ}]),

where

M̂k,ℓ =

{
{1,max{k, ℓ}}, if k = 1 or ℓ = 1,
{ t1t2 | k mod t1 = ℓ mod t2 = 0, gcd(t1, t2) = 1 }, otherwise.

Aside from this, for the union operation on regular languages, we can apply
De Morgan’s law to derive the following statement from Theorems ?? and ??.

Theorem 12. For n ≥ 2 we have

[1, (⌊n/2⌋ − 1) · ⌊n/4⌋ − 1] ⊆ gmpe,u∪ (n, n)

and
gmpe,u∪ (n, n) ∩ [n2 − n+ 2, n2] = ∅.

3.2 Computational Complexity of the Pumping-Problem

We will consider the following decision problem [?] related to the pumping lem-
mata stated in the introduction:

Language-Pumping-Problem or, for short, Pumping-Problem:
Input: a finite automaton A and a natural number p, i.e., an encoding ⟨A, 1p⟩.
Output: Yes, if and only if the statement from Lemma ?? holds for the lan-

guage L(A) w.r.t. the value p.

For DFAs and NFAs the following results are known: already for DFAs this prob-
lem is intractable, namely coNP-complete [?], regardless whether we check for
Kozen’s [?] or Jaffe’s [?] pumping property. This is quite remarkable, since it is a
rare example of a computationally intractable property of a given deterministic
finite automaton. The latter pumping property turned out to be more complex
for NFAs, namely PSPACE-complete, while the former was shown to be coNP-
hard and contained in ΠP

2 , the second co-level of the polynomial hierarchy, for
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nondeterministic finite state devices [?]. Moreover, for NFAs, and even for DFAs,
inapproximability results were recently shown for both pumping properties as-
suming the Exponential Time Hypothesis (ETH) [?,?]. In all cases the involved
finite automata were at least binary. Thus, the question arises, whether similar
results on the Pumping-Problem also hold for unary finite state devices. We
answer this question in the affirmative. Our findings are summarized in Table ??.

Pumping-Problem w.r.t. . . .

Automaton Lemma ?? Lemma ??

unary
DFA L-complete

DFA coNP-complete

unary coNP-hard
NFA in ΠP

2 in ΘP
2

NFA coNP-hard
PSPACE-compl.

in ΠP
2

Table 3. Complexity of the Pumping-Problem for variants of finite state devices.
Gray shaded entries indicate new results.

We first prove an auxiliary result on the relation of minimal pumping con-
stants and the universality of unary languages:

Lemma 13. Let L ⊆ {a}∗ be a unary regular language. Then the following
statements hold:

1. If the empty word λ and the word a are in L, then mpc(L) = 1 iff L = a∗.
2. If λ is in L, then mpe(L) = 1 if and only if L = a∗.

Let us first focus on the Pumping-Problem for unary DFAs. The following
lemma is quite useful for the study of this problem. Recall that the condition
xytz ∈ L simplifies to xyt ∈ L since concatenation is commutative for unary
languages.

Lemma 14. Let A = (Q, {a}, · , q0, F ) be a unary DFA and w = xyz a word
in L(A) with x ∈ a∗ and y ∈ a+. Then xy∗ ⊆ L(A) if and only if every word
x, xy, xy2, . . . , xyℓ belongs to L(A), for ℓ = |Q|.

Now we are ready for the complexity of the Pumping-Problem for unary
DFAs w.r.t. Lemma ??.

Theorem 15. Given a unary DFA A and a natural number p, it is L-complete
w.r.t. weak reductions to decide whether for the language L(A) the statement
from Lemma ?? holds for the value p.
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We turn our attention to the Pumping-Problem for unary DFAs w.r.t.
Lemma ??. Here we observe that the problem remains L-complete. However,
we need an auxiliary result checking for the Myhill-Nerode classes that appear
during pumping—compare with a similar result for arbitrary DFAs and NFAs
recently shown in [?].

Lemma 16. Given a unary DFA A = (Q, {a}, · , q0, F ) and two unary words x
and y, deciding whether every word in xy∗ describes the same equivalence class
w.r.t. the Myhill-Nerode relation ∼L(A), is L-complete. If the automaton A is a
unary NFA, the problem becomes coNP-complete.

The following theorem gives the answer to the computational complexity of
the Pumping-Problem for unary deterministic finite automata.

Theorem 17. Given a unary DFA A and a natural number p, it is L-complete
to decide whether for the language L(A) the statement from Lemma ?? holds for
the value p.

Next we study the Pumping-Problem for unary NFAs. The non-universality
problem for unary NFAs automata was shown to be NP-complete [?]. The classic
reduction is from 3SAT, and makes use of the Chinese Remainder Theorem. The
construction can be adapted to show our next inapproximability result under the
assumption of the so-called Exponential Time Hypothesis (ETH) [?,?]: there is
no algorithm that solves 3-SAT in time O∗(2o(n+m)), where n and m are the
number of variables and clauses, respectively.

Theorem 18. Let A be a unary NFA with s states. Then it is impossible to
approximate the pumping constant with respect to Lemma ?? within a factor

of o( 4
√
s log s) if the running time is in 2

o

(
4
√

s
(log s)3

)
, assuming the Exponential

Time Hypothesis. For the pumping constant with respect to Lemma ??, the in-

approximability factor is even 2
o
(

4
√

s(log s)3
)

for the same running time, again
assuming the Exponential Time Hypothesis.

We note that a more efficient subexponential-time reduction for the NFA uni-
versality problem is given in [?], which might yield an improved lower bound on
inapproximability. Nevertheless, from the previous proof we can deduce an coNP-
lower bound for the Pumping-Problem for unary NFAs, regardless whether we
consider Lemma ?? or ??. For the upper bound we explore an auxiliary state-
ment that was shown in [?] and reads as follows:

Lemma 19. Given an NFA A = (Q,Σ, · , q0, F ) and a word w over Σ, the
language inclusion problem for w∗ in L(A) is coNP-complete.

Now we are ready for our last theorem:

Theorem 20. Given a unary NFA A and a natural number p, it is coNP-hard
and it can be decided in ΠP

2 whether for the language L(A) the statement from
Lemma ?? holds for the value p. In case Lemma ?? has to be fulfilled, the problem
can be decided in ΘP

2 .

11



Proof. Due to space constraints, we only give proofs for the upper bounds. When
considering Lemma ??, the upper bound is seen as follows—and literally is taken
from [?]: Let ⟨A, p⟩ be an input instance of the problem in question, where Q
is the state set of A. We construct a coNP Turing machine M with access to
a coNP oracle: first the device M deterministically verifies whether p ≥ |Q|,
and if so, it halts and accepts. Otherwise the computation universally guesses
(∀-states) a word w with p ≤ |w| < |Q|. On that particular branch M checks de-
terministically if w belongs to L(A). If this is not the case the computation halts
and accepts. Otherwise, M deterministically cycles through all valid decompo-
sitions w = xyz with |y| ≥ 1. Then it constructs a finite automaton B accepting
the language quotient (x−1 ·L(A)) ·z−1. Here, if A is deterministic, then so is B.
Then M decides whether y∗ ⊆ L(B) with the help of the coNP oracle—compare
Lemma ??. If y∗ ⊆ L(B), then the cycling through the valid decompositions is
stopped, and the device M halts and accepts. Notice that the latter is the case
iff xy∗z ⊆ L(A). Otherwise, i.e., if y∗ ̸⊆ L(B), the Turing machine M contin-
ues with the next decomposition in the enumeration cycle. Finally, if the cycle
computation finishes, the Turing machine halts and rejects, because no valid
decomposition of w was found that allows for pumping. In summary, the Turing
machine operates universally, runs in polynomial time, and uses a coNP oracle.
Thus, the containment in ΠP

2 follows.

When considering Lemma ??, we cannot apply this algorithm: it would not
result in a polynomial time bound, since |w| ≤ 2|Q| has to be satisfied. Thus,
we proceed differently, and utilize the relation between the deterministic state
complexity of a unary regular language and the minimal pumping constant w.r.t.
Jaffe’s pumping lemma as mentioned in Lemma ??: if L is a unary regular
language, then mpe(L) = sc(L). Thus, we construct a P Turing machine M
with non-adaptive access to an NP oracle that checks for inequivalence on unary
finite state devices—recall that the value p from the input is encoded in unary:
first M deterministically lists all words am that belong to L(A) with m ≤ q
by simulating the given NFA A with an incremental powerset construction. The
words from this list will be used to determine the accepting states of the DFAs
constructed next. Every unary DFA consists of a tail and a loop of states. The
Turing machine then lists all unary DFAs by cycling through all combinations
of tail and loop states such that the overall number of states does not exceed q.
Here the above constructed list of words is used to assign the accepting states to
these automata appropriately. By simple combinatorics one observes, that there
exists only polynomially many unary DFAs that can be constructed in that way.
Then the NP oracle is questioned on this list of unary DFAs. Since we are asking
for inequivalence, the Turing machine halts and accepts if at least one query is
answered negatively; otherwise the Turing machine halts and rejects. It is easy
to see that M decides the Pumping-Problem w.r.t. Jaffe’s pumping lemma. To
summarize, the Turing machine operates deterministically, runs in polynomial
time, and uses an NP oracle such that a list of all queries is formed before any
of them is made. Thus, the containment within ΘP

2 follows. ⊓⊔
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