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In the last 20 years, a large body of research on the descriptional com-
plexity of finite automata has been developed. To the authors’ knowledge,
the first systematic attempt to start a parallel development for the descrip-
tional complexity of regular expressions was presented by Ellul et al. [4]
at the workshop “Descriptional Complexity of Formal Systems” (DCFS),
in 2002. In particular, they raised the question of determining how basic
language operations such as complementation and intersection affect the
required regular expression size. For the intersection and shuffle operation,
exponential lower bounds are known, and complementation can even incur a
doubly-exponential blow-up [5, 6]. In [6] it was shown that the star height of
a regular language is at most logarithmic in the minimum regular expression
size, and lower bounds are proved by finding families of languages for which
the respective language operations give rise to a dramatic increase in star
height. In contrast, it is well known that taking language quotients does not
increase the star height [3]. This and similar language operations appear to
be a natural testing ground for deepening our understanding of the descrip-
tional complexity of regular expressions: Either one has to find some new
lower bound techniques, or one has to find a nontrivial implementation of
these operations on regular expressions, or both—a straightforward proce-
dure would be to convert the expression into a finite automaton, implement
the operation on a finite automaton, and convert back to a regular expres-
sion using state elimination. Yet that last step can incur an exponential
blow-up in general, even over binary alphabets [6].
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Here, we give upper bounds for the required expression size resulting
from taking language quotients and circular shift. The (left) quotient of
L with respect to a set of words W , denoted by W−1L, is defined as⋃

w∈W w−1L, where w−1L = {x | wx ∈ L }, for some word w. More-
over, the circular (or cyclic) shift of a language, denoted by ©(L), is given
by {xw | wx ∈ L }. Descriptional complexity aspects of these operations
were already studied in [1, 11] for the circular shift and [8, 9] for language
quotients—the latter two references consider deterministic finite automata
with multiple start states, but the results easily translate to state complex-
ity results for (left) quotients. The basic idea is to implement the operation
for the special case of linear expressions [2] called single-occurrence regular
expressions in [5]. These are expressions in which every alphabetic symbol
occurs exactly once, which makes it easier to deal with as they can describe
only local languages. To cover the general case, we study the interplay of the
operations with length-preserving homomorphisms. The main result reads
as follows—the size of a regular expression is defined as the total number of
occurrences of letters from the underlying alphabet:

Theorem 1 Let r be a regular expression of size n denoting the language
L ⊆ Σ∗, and let W ⊆ Σ∗. Then there is a regular expression of size O(n2)
denoting W−1L and a regular expression of size O(n3) denoting ©(L).

Currently, we do not know whether these upper bounds have the right
order of magnitude. Nevertheless, it is worth mentioning that for the latter
operation, i.e., the circular shift operation, at least an almost quadratic
blow-up can be necessary in the worst case.

Theorem 2 There exist infinitely many regular languages Lm over a binary
alphabet such that Lm admits a regular expression of alphabetic width m, but
every regular expression describing ©(Lm) has size at least Ω

(
m2

log2 m

)
.

One task for further research is to find other regularity preserving oper-
ations for which this or similar approaches might work. For instance, for the
language of scattered substrings (superstrings, respectively) of the language
described by a regular expression over Σ, we simply replace every position
a with a subexpression λ + a (with a subexpression describing Σ∗aΣ∗, re-
spectively) to obtain a regular expression denoting that language. Both
operations can be thus performed with only linear increase in expression
size provided Σ is fixed. Issues on the state complexity of these operations
were studied recently in [7] and [10].
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M. M. Halldórsson, A. Ingólfsdóttir, and I. Walkuwiewicz, editors, Pro-
ceedings of the 35th International Colloquium on Automata, Languages
and Programming, volume 5126 of LNCS, pages 39–50, Reykjavik, Ice-
land, July 2008. Springer.

[7] H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-
Haines sets: Effective constructions. In J. O. Durand-Lose and M. Mar-
genstern, editors, Proceedings of the 5th International Conference Ma-
chines, Computations, and Universality, volume 4664 of LNCS, pages
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