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Abstract. Finite languages lie at the heart of literally every regular
expression. Therefore, we investigate the approximation complexity of
minimizing regular expressions without Kleene star, or, equivalently,
regular expressions describing finite languages. On the side of approx-
imation hardness, given such an expression of size s, we prove that it
is impossible to approximate the minimum size required by an equiv-

alent regular expression within a factor of O ( i if the running

log )9
time is bounded by a quasipolynomial function depeilding on 0, for ev-
ery 0 > 1, unless the exponential time hypothesis (ETH) fails. For ap-
proximation ratio O(slf‘s), we prove an exponential-time lower bound
depending on §, assuming ETH. The lower bounds apply to alphabets
of constant size. On the algorithmic side, we show that the problem can
be approximated in polynomial time within O(%), with s being
the size of the given regular expression. For constant alphabet size, the
bound improves to O(IO;S). Finally, we devise a family of superpolyno-
mial approximation algorithms with approximation ratios matching the
lower bounds, while the running times are just above the lower bounds

excluded by the exponential time hypothesis.

1 Introduction

Regular expressions are used in many applications and it is well known that
for each regular expression, there is a finite automaton that defines the same
language and wvice versa. Automata are very well suited for programming tasks
and immediately translate to efficient data structures. On the other hand, regular
expressions are well suited for human users and therefore are often used as
interfaces to specify certain patterns or languages.

Regarding performance optimization, putting effort into the internal repre-
sentation inside the regex engine is of course a natural choice. On the other hand,
most of the time, developers use existing APIs but are not willing, or able, to
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change the source code of these. Thus, sometimes practitioners, as well as theory
researchers, see a need for optimizing the input regular expressions, as witnessed
by questions in pertinent Q&A forums.* More often than not, the regular expres-
sions under consideration are in fact without Kleene star, that is, they describe
only finite languages. Moreover, recently the descriptional complexity of finite
languages attracted new attention because of its close connection to well-known
measures for the complexity of formal proofs in first-order predicate logic [7].

The problem of minimizing regular expressions accepting infinite languages is
PSPACE-complete, and even attaining a sublinear approximation ratio is already
equally hard [11]. When restricting to finite languages, there is of course the clas-
sical reduction from 3-SAT to the equivalence problem for regular expressions
without star [19, Thm. 2.3]. It is sometimes overlooked that, unlike the case of
infinite languages, the classical reduction does not imply hardness of the corre-
sponding minimization problem. In fact, no lower bounds for minimizing regular
expressions without Kleene star were known prior to the present work at all.’
Also, there are hardness results for minimizing acyclic nondeterministic finite
automata [3,12], and also for minimizing acyclic context-free grammars [16]—
but nothing thus far for regular expressions without star. In this work, we fill
this gap by proving tight lower and upper approximability bounds.

As a byproduct of our proofs, we also substantially improve the inapproxima-
bility bound for minimizing nondeterministic finite automata in the case of finite
languages, and give the first nontrivial approximation guarantee. The results are
summarized in Table 1.

Recent years have seen a renewed interest in the analysis of computational
problems, among others, on formal languages, since more fine-grained hardness
results can be achieved based on the exponential time hypothesis (ETH) than
with more traditional proofs based on the assumption P # NP [1,2,6,9,24,
25]. Namely, ETH posits that there is no algorithm that decides 3-SAT formulae
with n variables in time 2°(™) and is just one among other strong hypotheses that
were used during the last decade to perform fine-grained complexity studies; for
a short survey on results obtained by some of these hypotheses, we refer to [26].

We contribute a fine-grained analysis of approximability and inapproxima-
bility for minimizing regular expressions without Kleene star. On the side of
approximation hardness, given such an expression of size s, we prove that it is

4See for example the following questions drawn from various sites:
(i) P. Krauss: Minimal regular expression that matches a given set
of words, URL: https://cs.stackexchange.com/q/72344, Accessed: 2021-
01-02, (i) J. Mason: A released perl with trie-based regexps! URL:
http://taint.org/2006,/07/07/184022a.html, Accessed: 2020-07-21, (iii)
pdanese (StackOverflow username): Speed up millions of regex replace-
ments in Python 3, URL: https://stackoverflow.com/q/42742810, Accessed:
2021-01-02, (iv) P. Scheibe: RegEx performance: Alternation vs Trie,
URL:  https://stackoverflow.com/q/56177330,  Accessed:  2021-01-02, and
(v) Ch. Xu: Minimizing size of regular expression for finite sets, URL:
https://cstheory.stackexchange.com/q/16860, Accessed: 2021-01-02.

® See, e. g., item (v) of the previous footnote.
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Table 1. Coarse-grained overview of known and new results for minimization problems.
For better comparability, approximability is understood to be in polynomial time, and
hardness results are under classical assumptions such as P # NP.

impossible to approximate the minimum size required by an equivalent regular
expression within a factor of O (m) if the running time is bounded by a

quasipolynomial function depending on ¢, for every § > 1, unless the ETH fails.
For approximation ratio O(s'~%), we prove an exponential-time lower bound
depending on §, assuming ETH. These lower bounds apply to alphabets of con-
stant size. On the algorithmic side, we show that the problem can be approx-
imated in polynomial time within O(%L where s is the size of the given
regular expression. For constant alphabet size, the bound improves to O(lo‘; <)
Finally, we devise a family of superpolynomial approximation algorithms that
attain the performance ratios of the lower bounds, while their running times are

just above those excluded by the ETH. For instance, we attain an approxima-
tion ratio of O (ﬁ) in time 20(1°€)°) for § > 1, and a ratio of s'~% in

log
time 20¢") for § > 0. These running times nicely fit with the excluded running

times of 2°(0°69)°) and of 20"). respectively, for these approximation ratios.

This paper is organized as follows: in the next section, we define the basic
notions relevant to this paper. Section 3 covers approximation hardness results
for various runtime regimes based on the ETH. Then in Section 4, these nega-
tive results are complemented with approximation algorithms that neatly attain
these lower bounds. In Section 5, we transfer some of these results to the mini-
mization problem for nondeterministic finite automata. To conclude this work,
we indicate possible directions for further research in the last section. Due to
space constraints, some of the proofs are omitted.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as contained in [18]. In particular, let X be an alphabet and X* the set
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of all words over the alphabet X including the empty word €. The length of a
word w is denoted by |w|, where |e| = 0, and the total number of occurrences of
the alphabet symbol a in w is denoted by |w],. In this paper, we mainly deal with
finite languages. The order of a finite language L is the length of a longest word
belonging to L. A finite language L C X* is called homogeneous if all words in the
language have the same length. We say that a homogeneous language L C X" is
fullif L is equal to ™. For languages L1, Ly C X*, the left quotient of Ly and Lo
is defined as Ly 'Ly = {v € X* | there is some w € L; such that wv € Ly }.
If L, is a singleton, i.e., Ly = {w}, for some word w € X*  we omit braces,
that is, we write w1 Ly instead of {w}~*Ly. The set w~ 'Ly is also called the
derivative of Ly w.r.t. the word w. In order to fix the notation, we briefly recall
the definition of regular expressions and the languages described by them.

The regular expressions over an alphabet X are defined inductively in the
usual way:® ), ¢, and every letter a € X is a regular expression; and when F
and F are regular expressions, then (E + F), (E - F), and (E)* are also regular
expressions. The language defined by a regular expression F, denoted by L(E),
is defined as follows: L(0) = 0, L(e) = {e}, L(a) = {a}, L(E+F) = L(E)UL(F),
L(E-F)=L(E)-L(F), and L(E*) = L(E)*. The alphabetic width or size of a
regular expression E over an alphabet X, denoted by awidth(E), is defined as the
total number of occurrences of letters of X' in E. For a regular language L, we
define its alphabetic width, awidth(L), as the minimum alphabetic width among
all regular expressions describing L.

We are interested in regular expression minimization w.r.t. its alphabetic
width (or, equivalently, its size). An algorithm that returns near-optimal solu-
tions is called an approzimation algorithm. Assume that we are working on a
minimization problem in which each potential solution has a positive cost and
that we wish to find a near-minimal solution. We say that an approximation
algorithm for the problem has a performance guarantee of p(n) if for any input
of size n, the cost C of the solution produced by the approximation algorithm
is within a factor of p(n) of the cost C* of a minimal solution: g < p(n).
If the approximation algorithm is running in polynomial time, we speak of a
polynomial-time approximation algorithm. For most of our hardness results, we
assume the exponential time hypothesis (ETH) introduced in [20].

Exponential time hypothesis. There is a positive constant ¢ such that the
satisfiability of a formula in 3-CNF with n variables and m clauses cannot be
decided in time 2¢"(m + n)°W).

In particular, using the Sparsification Lemma [20], the ETH implies that
there is no algorithm running in time 2°™) that decides satisfiability of a 3-
SAT formula with m clauses. This is of course a much stronger assumption
than P # NP. For more background on the topic, see, e.g., the survey [21].

S For convenience, parentheses in regular expressions are sometimes omitted and con-
catenation is sometimes simply written as juxtaposition. The priority of operators
is specified in the usual fashion: concatenation is performed before union, and star
before both concatenation and union.
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3 Inapproximability

In this section, we will show that, for a given regular expression without Kleene
star, the minimum size required by an equivalent regular expression cannot be
approximated within a certain factor if the running time is within certain bounds,
assuming the ETH. We start off with an estimate of the required regular expres-
sion size for a language which we shall use as gadget.

Lemma 1. Let P, = {zy € {0,1}* | |z| = |y| = r and x = y*} denote the
language of all binary palindromes of length 2r. Then 2" < awidth(P,) < 2724,

The upper bound is in fact tight, yet proving this takes a lot more effort [15].
Notwithstanding, the simple lower bound above suffices for the purpose of the
present work.

It was shown in [14] that taking the quotient of a regular language can cause
at most a quadratic blow-up in required regular expression size. Vice versa, the
alphabetic width of a language can be lower-bounded by the order of the square
root of the alphabetic width of any of its quotients. For our reduction, we need a
tighter relationship. This is possible if we resort to special cases. Let us consider
homogeneous languages and expressions in more detail. First, we need a simple
observation that turns out to be very useful in the forthcoming considerations.

Lemma 2. Let L C X" be a homogeneous language. If E is a reqular expression
describing L, then any subexpression of E describes a homogeneous language, too.

Now we are ready to consider the descriptional complexity of quotients of
homogeneous languages in detail.

Lemma 3. Let L C X" be a homogeneous language. Then awidth(w™1L) <
awidth(L), for any word w € X*.

We build upon the classical coNP-completeness proof of the inequality prob-
lem for regular expressions without star given in [19, Thm. 2.3]. We recall the
reduction to make this paper more self-contained.

Theorem 4. Let ¢ be a formula in 3-DNF with n variables and m clauses. Then
a regular expression ¢ can be computed in time O(m - n) such that the language
Z = L(() is homogeneous and Z is full if and only if ¢ is a tautology.

Proof. Let ¢ = \/I, ¢; be a formula in 3-DNF. We can assume without loss
of generality that no clause ¢; contains both x; and T, as a literal. For each
clause ¢;, let §; = (;1Gio - - - (in, Where

(0+1) if both z; and T; are not literals in ¢;,
Gij =40 if z; is a literal in ¢;,
1 if z; is a literal in c;.
Let ( =+ G+ +Cm. Clearly, Z = L(¢) C {0,1}™. Let w in {0,1}"™. Then w

is in Z if and only if w satisfies some clause ¢;. Thus Z = {0,1}" if and only if ¢
is a tautology. This completes the reduction. ad
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Now if we wanted to apply the reduction from Theorem 4 to the minimization
problem for regular expressions, the trouble is that we cannot predict the mini-
mum required regular expression size for Z = L(({) in case it is not full. To make
this happen, we use a similar trick as recently used in [16] for the analogous case
of context-free grammars. In the following lemma, we embed the language P,
of all binary palindromes of length 2r together with the language Z = L(¢) (as
defined in Theorem 4) into a more complex language Y. Depending on whether
or not Z is full, the alphabetic width of Y is at most linear or at least quadratic,
respectively, in m. Recall that m refers to the number of clauses in the given 3-
DNF formula ¢.

Lemma 5. Let ¢ be a formula in 3-DNF with n variables and m clauses and
let ¢ be the regular expression constructed in Theorem 4. Furthermore, let

Y =Z2-{0,1}*" u{0,1}"- P,,

where Z = L(¢) and P., forr < m, is defined as in Lemma 1. Then awidth(Y") =
O(m) if Z is full, and awidth(Y') = £2(27) if Z is not full.

The above lemma can serve as a gap introducing reduction. For example, if
we take r = 2logm, then £2(27) is in £2(m?). Now we are in the position to state
our first inapproximability result.

Theorem 6. Let E be a reqular expression without Kleene star of size s, and

let & be a constant such that 0 < § < % Then no deterministic 20(55)-time
algorithm can approzvimate awidth(L(E)) within a factor of o(s'~%), unless ETH
fails.

Proof. We give a reduction from the 3-DNF tautology problem as in Lemma 5.
That is, given a formula ¢ in 3-DNF with n variables and m clauses, we construct
a regular expression that generates the language Y = Z - {0,1}?" U {0,1}" - P,.
The sets P, and Z are defined as in Lemma 1 and Theorem 4, respectively. Here,
the set Y features some carefully chosen parameter r, which will be fixed later
on. For now, we only assume 2logm < r < m.

Next, we need to show that the reduction is correct in the sense that if Z is
full, then awidth(Y) is asymptotically strictly smaller than in the case where
it is not full. By Lemma 5, it follows that awidth(Y) = O(m) if Z is full
and awidth(Y') = 2(2"), otherwise. Thus, the reduction is correct, since we have
assumed that r > 2logm, and consequently 2" = w(m).

It is easy to see that the running time of the reduction is linear in the size
of the constructed regular expression describing Y. Now we estimate the size of
that regular expression. Recall from Theorem 4 that the regular expression ¢
has size O(m - n). Because formula ¢ is a 3-DNF, we have m > n/3, and so
the size of ( is in O(m?). The set {0,1}"72" admits a regular expression of size
O(m+n) = O(m); and awidth(P.) = ©(2") by Lemma 1. Since we have assumed
that r > 2logm, the order of magnitude of the constructed regular expression
is s =O(2").
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Now we need to fix the parameter r in our reduction; let us pick r = % -log m.
Recall that the statement of the theorem requires % > 2, thus we have r >
2logm. So this is a valid choice for the parameter r—in the sense that the
reduction remains correct.

Towards a contradiction with the ETH, assume that there is an algorithm As
approximating the alphabetic width within 0(31_5) running in time 20(s°).
Then As could be used to decide whether Z is full as follows: the putative
approximation algorithm Ajs returns a cost C' that is at most o(s'~%) times the
optimal cost C*, that is, C' = o(s'7%) - C* = o(s'7°) - awidth(Y").

On the one hand, if Z is full, then awidth(Y) = O(m) by Lemma 5. In this
case, the hypothetical approximation algorithm Ajs returns a cost C with C' =

o(m-s'%) =0 (m o) (mlls)lé) =0 (m%(l_‘m'l) =o0 (nﬁ) = 0(2"). In the

second step of the above calculation, we used the fact that s = ©(27) = O(m7)
and in the last step, we used the fact that we chose r as r = % - log m, which is
equivalent to 2" = ms.

On the other hand, in case Z is not full, then Lemma 5 states that awidth(Y) =
£2(27). Using the constants implied by the O-notation, the size returned by al-
gorithm As could thus be used to decide, for large enough m, whether Z is full,
and thus by Theorem 4 whether the 3-DNF formula ¢ is a tautology.

It remains to show that the running time of As in terms of m is in 2°0™) which
contradicts the ETH. Recall again that s = ©(m?); we thus can express the

Y
running time of the algorithm Ags in terms of m, namely, 2o(s°) = 20(@(m6) ) =

. + s
20((0 me) ) = 2°0m) for some constant ¢, which yields the desired contradiction.
O

Assuming ETH, the above proof also implies that the problem cannot be
solved exactly in time 2°(v#). The inapproximability result can be stated more
simply when using the classical hardness assumption P % NP:

Corollary 7. Let E be a regular expression without Kleene star of size s, and
let 0 be a constant with 0 < § < 1. Then no deterministic polynomial-time
algorithm can approzimate awidth(L(E)) within a factor of s*~°, unless P= NP.

Proof. The reduction in Theorem 6 is from a coNP-complete problem and runs
in polynomial time for every choice of § > % Observe that it suffices to show
approximation hardness for § < %, since the weaker hardness result for § > % is

then implied. a

Again, assuming ETH, we can change the parameter r in the reduction in
Theorem 6 to trade a sharper inapproximability ratio against a weaker lower
bound on the running time.

Theorem 8. Let E be a reqular expression without Kleene star of size s, and

let § be a constant with § > 1. Then no deterministic 2°1°89)° _time algorithm can
approzimate awidth(L(E)) within a factor of o (s/(logs)?), unless ETH fails.
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4 Approximability

From the previous section, we know that there are severe limits on what we
can expect from efficient approximation algorithms. In this section, we present
different approximation algorithms for minimizing regular expressions describing
finite languages. Each of them introduces a new algorithmic hook, some of which
might be useful in implementations. We start off with an algorithm that requires
the input to be specified non-succinctly as a list of words. In case the alphabet
size is sufficiently large, listing simply all words is enough; otherwise we construct
a deterministic finite automaton and further distinguish on the number of states.
This leads to the following result.

Theorem 9. Let L be a finite language given as a list of words, with s being the
sum of the word lengths. Then awidth(L) can be approzimated in deterministic
polynomial time within a factor of O(\ﬂ;@)

Recall that the minimal deterministic finite automaton can be exponentially
larger than regular expressions in the worst case, also for finite languages [22].
Also, the conversion from deterministic finite automata to regular expressions
is only quasipolynomial in the worst case. These facts of course affect the per-
formance guarantee. Nevertheless, we believe that the scheme from the proof
of Theorem 9 is worth a look, since the minimal deterministic finite automa-
ton may eliminate a lot of redundancy in practice. Furthermore, the algorithm
works equally if we are able to construct a nondeterministic finite automaton
which is smaller than the minimal deterministic finite automaton. To this end,
some recently proposed effective heuristics for size reduction of nondeterministic
automata could be used [5].

Admittedly, regular expressions are exponentially more succinct than a list
of words and our inapproximability results crucially rely on that. So, we now
turn to the second approximation algorithm. It makes use of the fact that if a
given regular expression E describes very short words only, then it is not too
difficult to produce a regular expression that is noticeably more succinct than E.
In that case, the algorithm builds a trie, which then can be converted into an
equivalent regular expression of size linear in the trie.

For the purpose of this paper, a trie (also known as prefiz tree) is simply a
tree-shaped deterministic finite automaton with the following properties:

1. The edges are directed away from the root, i.e., towards the leaves.
2. The root is the start state.

3. All leaves are accepting states.

4. Each edge is labelled with a single alphabet symbol.

The last condition is needed if we want to bound the size of an equivalent regular
expression in terms of the nodes in the trie. The following lemma seems to be
folklore; the observation is used, e.g., in [17].

Lemma 10. LetT be a trie with n nodes accepting L. Then an equivalent regular
expression of alphabetic width at most n — 1 can be constructed in deterministic
polynomial time from T.
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Now we have collected all tools for an approximation algorithm that works
with regular expressions as input, which even comes with an improved approxi-
mation ratio.

Theorem 11. Let E be a regular expression without Kleene star of alphabetic

width s. Then awidth(L(E)) can be approximated in deterministic polynomial
sloglog s

time within a factor of O Toz s

Proof. We again start with a case distinction by alphabet size.

1. The size of the alphabet used in L is at most log s. We further distinguish the

cases in which the order of L(E), i.e., the length of a longest word in L(E),
is less than logoﬁ) o5 or not. The order of L(E) can be easily computed recur-
sively, in polynomial time, by traversing the syntax tree of E. We consider
two subcases:

(a) The order of L(E) is less than log)fgo‘;s. We enumerate the words in L(E),
e.g., by performing a membership test for each word of length less than
lololgo o<~ Then we use a standard algorithm to construct a trie for L(E).
Tie worst case for the size of T' is when L contains all words of length less
than log)lgo;s' Then T is a full (log s)-ary trie of height log)lgo;s' All nodes
are accepting, giving a one-to-one correspondence between the number

of nodes in 7" and the number of words in L(T"). That is, the number

log s

log s
7_1 . O; og s
of nodes in T is equal to >_;%%°*° (logs)’ = O <(h)g512);§1g)~ Using

log s
an equivalent regular expression of that size in deterministic polynomial
time by virtue of Lemma 10.

(b) The order of L(E) is at least 102053 ‘; ~. We make use of the observation that

the order of L(FE), i.e., the length of a longest word in L(FE), is a lower
bound on the required regular expression size, as observed, e.g., in [8,
Proposition 6]. That is, the optimal solution is at least of size 1og)fgo Zs
and thus the regular expression F given as input is already a feasible
solution that is at most % times larger than the optimal solution.

2. The size of the alphabet used in L is greater than log s. The size of the al-
phabet used in L is likewise a lower bound on the required regular expression
size and, similarly to the previous case, the input is a feasible solution that

is at most >~ times greater than the optimal solution size.

log

the fact that (logs) s Togs = s, this is in O ( v ) and we can construct

This proves the stated claim. a

For alphabets of constant size, the performance ratio can be slightly im-
proved—Dby a factor of loglog s.

Theorem 12. Let E be a reqular expression without Kleene star of alphabetic
width s over a fized k-ary alphabet. Then awidth(L(E)) can be approzimated in

S
logs | *

deterministic polynomial time within a factor of O
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A better performance ratio can be achieved if we allow a superpolynomial
running time.

Theorem 13. Let E be a regular expression without Kleene star of alphabetic
width s, and let f(s) be a time constructible” function with f(s) = 2(logs).
Then awidth(L(E)) can be approzimated in deterministic time 20U () within a

factor of O (%f)(g))

Proof. First, as in Theorem 11, we make a case distinction by alphabet size,
and then distinguish by the order of the language. Recall that the order of
the language can be computed in polynomial time in a recursive manner on
the syntax tree of E. The main new ingredient of this proof is a brute-force
search for an optimal solution, powered by a context-free grammar that efficiently
generates the search space of candidate regular expressions. So, we again start
with distinguishing by alphabet size:

1. The size k of the alphabet used in L(F) is at most f(s). Again, we consider
two subcases:

(a) The order of L(E) is less than f(s)/log f(s). We make use of the fact
that there is a context-free grammar generating all regular expressions
describing finite languages over the alphabet used in E. Such a gram-
mar can be used to enumerate all regular expressions of size less than
f(s)/log f(s) with polynomial delay [10]. For finite languages, there
is an efficient grammar generating at most O(f(s))7(*)/1°8f() of these
candidates® in total [17, Prop. 8.3]. Observe that O(f(s))f(8)/ 18 f(s) =
20(f(s)) For each enumerated candidate regular expression C' and each
word w of length less than f(s)/log f(s), we test whether w € L(FE),
and if so, we verify that w € L(C). If C passes all these tests, we can
safely conclude that L(E) C L(C). To verify whether L(C) C L(FE),
we enumerate the words in L(E) and build a trie T' that accepts the
language. Notice that the trie has at most f(s)0(/(s)/1og f(s)) = 20(f(s))
nodes. Since T is a deterministic finite automaton, it can be easily com-
plemented, and we can apply the usual product construction—with the
position automaton of C—to check whether L(C) N X*\ L(T) = §. In
this way, each candidate regular expression can be tested with a running
time bounded by a polynomial in 29(/(*)) Recall that the total number
of candidates is in 2°/(8))and that the candidates can be enumerated

" We say that a function f(n) is time constructible if there exists an f(n) time-bounded

multitape Turing machine M such that for each n there exists some input on which M
actually makes f(n) moves [18].
The grammar in [17, Prop. 8.3] does not generate all valid regular expressions, but
incorporates some performance tweaks. These tweaks perfectly fit our purpose: while
the grammar does not generate all feasible solutions, it still generates at least one
optimal solution. More precisely, given a finite language L with awidth(L) = k, the
context-free grammar is guaranteed to enumerate a regular expression of alphabetic
width k for it.
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with polynomial delay. We conclude that in this case, if L(E) admits

an equivalent regular expression of size at most f(s)/log f(s), an op-

timal solution can be found by exhaustive search with a running time

bounded by 20NN 9@ — 20, The performance
ratio is $182(s)
fls)

(b) The order of L(E) is at least f(s)/log f(s). Again, the order of L(E) is

a lower bound on required regular expression size. Thus the regular ex-

pression E given as input is already a feasible solution with performance
slog f(s)
f(s)

2. The size of the alphabet used in L(E) is greater than f(s). Similarly, the size
of the used alphabet is a lower bound on the required regular expression size.
Thus, the regular expression F given as input is a feasible solution, whose
performance ratio is ﬁ in this case.

ratio

This completes the proof. a

Observe that although the statement of Theorem 13 specializes to Theo-
rem 11 if we set f(s) = log s, the two proofs nevertheless use different algorithms.
Both approaches will have their own merits and their own tradeoffs between run-
ning time and performance guarantees when put to practice. Again, in case the
alphabet size is bounded, we can slightly improve the performance guarantee of
the previous theorem—compare with Theorem 12.

Theorem 14. Let E be a regular expression without Kleene star of alphabetic
width s over a fized k-ary alphabet, and let f(s) be a time constructible function
with f(s) = 2(logs). Then awidth(L(E)) can be approximated in deterministic

time 207 ) within a factor of O (ﬁ)

To compare this with our inapproximability results, we pick f(s) = s°, for
some § < %, to obtain an approximation ratio of s'~9 in time 20(s%). Here,

Theorem 6 rules out an approximation ratio of o(s'~%) within a running time
of 2°(+). Another pick is f(s) = (logs)?, for some § > 1, yielding an approx-

imation ratio O (log%)é in time 200e®)’ I contrast, Theorem 8 rules out

an approximation ratio of o (W) in time 2°0°69)° Tn both cases, the up-

per bound asymptotically matches the obtained lower bounds, and thus there
remains little room for improvements, unless the ETH fails.

5 Minimizing Nondeterministic Finite Automata

In this section, we show that several of our results apply mutatis mutandis to
the problem of minimizing acyclic nondeterministic finite automata, i.e., those
accepting finite languages.
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Theorem 15. Let A be an s-state acyclic nondeterministic finite automaton,

and let § be a constant such that 0 < 6 < % Then no deterministic 20(56)-tim6

algorithm can approzimate the nondeterministic state complexity of L(A) within
a factor of O(s'~%), unless ETH fails.

Corollary 16. Let A be an s-state acyclic nondeterministic finite automaton,
and let § be a constant with 0 < § < 1. Then no deterministic polynomial-time
algorithm can approzimate the nondeterministic state complexity of L(A) within
a factor of O(s'~%), unless P= NP. ad

The quasipolynomial-time inapproximability result carries over as well:

Theorem 17. Let A be an s-state acyclic nondeterministic finite automaton,

and let § be a constant with § > 1. Then no deterministic 2°0°%)° _time algorithm
can approximate the nondeterministic state complexity of L(A) within a factor

of o(s/(log 5)%), unless ETH fails. O

Regarding positive approximability results, we cannot use the entire toolkit
that we have developed for regular expressions. For instance, the size of the used
alphabet does not bound the number of states needed. Also, even for binary
alphabets, the number of nondeterministic s-state finite automata is in 29(52),
which renders the enumeration of automata with few states less feasible. At least,
the polynomial-time approximation for bounded alphabet size carries over:

Theorem 18. Let A be an s-state acyclic nondeterministic finite automaton
over a fixed k-ary alphabet. Then the nondeterministic state complexity of L(A)

S
log s

can be approximated in deterministic polynomial time within a factor of O

6 Conclusion

We conclude by indicating some possible directions for further research. First,
we would like to continue with investigating inapproximability bounds within
polynomial time based on the strong exponential time hypothesis (SETH). Fur-
ther topics are exact exponential-time algorithms and parameterized complexity.
In addition to the natural parameter of desired solution size, the order of the
finite language and the alphabet size seem to be natural choices.

Given the practical relevance of the problem we investigated, we think that
implementing some of the ideas from the above approximation algorithms is
worth a try. Also, POSIX regular expressions restricted to finite languages are
a more complex model than the one we investigated, but a more practical one
as well. Although we would rather not expect better approximability bounds in
that model, we suspect that character classes and other mechanisms can offer
practical hooks for reducing the size of regular expressions.
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